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SUMMARY

This paper is concerned with the distributed control problem of second-order agents under directed network
topology. The control input of each agent only depends on its own state and the states of its neighbors
corrupted by white noises. By using the algebraic graph theory and stochastic analysis method, necessary and
sufficient conditions are presented for mean square bounded tracking. Finally, several simulation examples
are given to illustrate the results. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, there has been an increasing research interest in distributed cooperative control of
multi-agent systems. In particular, the so-called consensus control has been extensively studied.
Consensus control generally means to design a network protocol, such that as time goes on, all
agents asymptotically reach an agreement on their states to be coordinated. The consensus prob-
lem of first-order multi-agent systems has been studied in [1–3]. In [1], a systematic framework
to analyze the first-order consensus algorithms is proposed. In [2], asymptotic information consen-
sus under dynamically changing interaction topologies is realized for the case where the union of
the directed interaction graphs has a spanning tree frequently enough as the system evolves. In [3],
necessary and sufficient conditions are given on the consensus gains to achieve asymptotic unbi-
ased mean square average consensus. Unlike the first-order case, [4] shows that having a (directed)
spanning tree is a necessary rather than a sufficient condition for consensus with second-order
dynamics. Compared with the first-order case, the second-order consensus problem is more compli-
cated and challenging because all the states do not reach a consensus. The second-order consensus
of multi-agent systems with a virtual leader in a dynamic proximity network is investigated in [5].

Recently, the leader-following consensus problem of multi-agent systems has received increasing
attention [6–13], in which the leaders are usually independent of their followers, but have influence
on the followers’ behaviors. Therefore, one can realize one’s control objective by only controlling
the leader, which converts the control of the whole system into that of a single agent. Specifi-
cally, [6] considers the leader-following consensus problem of a group of autonomous agents with
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time-varying coupling delays. In [7], the leader-follower problem for multi-agent systems with
switching interconnection topologies is concerned. The leader-following consensus problem of
second-order multi-agent systems with fixed and switching topologies as well as non-uniform
time-varying delays is considered in [8]. When there exist noises in communication channels,
[9] investigates the consensus of discrete-time leader-follower multi-agent systems and derives
sufficient conditions guaranteeing the stochastic approximation type protocols with decreasing con-
sensus gains to reach mean square consensus by using the stochastic Lyapunov analysis. In [10],
the consensus of continuous-time leader-follower multi-agent systems is investigated and sufficient
conditions for the mean square consensus are given by employing stochastic analysis and algebraic
graph theory. In [11], the closed-loop control system is proved to be stochastically stable in the mean
square sense by estimating the velocity of the active leader, and the sampled-data-based consensus
tracking problem of second-order multi-agent systems is investigated in [12].

All of the aforementioned references assume that the agents can access the accelerations of its
neighboring agents or its leader in their consensus algorithms. Recently, [13] relaxes this assumption
and concentrates on the flocking problem using second-order tracking protocols in directed graphs
with switching topology but does not consider the measurement noises. In this paper, we consider
the distributed tracking of continuous-time second-order multi-agent systems with directed network
topology. The control input of each agent can only depend on its own state and the states of its
neighbors corrupted by stochastic communication noises. Compared with the existing work, the
contributions of this paper include the following:

(i) This paper is the first to study the distributed tracking problem for continuous-time second-
order leader-following multi-agent systems with noises. How to deal with the stochastic
noises is non-trivial;

(ii) The leader and the followers are both second order. Also, the leader’s acceleration cannot be
accessed by the followers and stochastic communication noises are taken into account. To
the best of our knowledge, there is no any result on this case;

(iii) Under a very general condition on the leader’s acceleration, necessary and sufficient condi-
tions are given for mean square bounded tracking. Furthermore, if the leader’s acceleration
has a limit when the time goes to infinity, we prove that the bound of the tracking error
is tight.

The remainder of this paper is organized as follows. Section 2 offers some preliminary results.
Section 3 describes the problem under investigation. Section 4 focuses on the mean square bounded
tracking control of multi-agent systems. After that, in Section 5, several simulation examples are
presented to show the effectiveness of the theoretical results. The paper is concluded in Section 6.

2. PRELIMINARIES

The following notation will be used throughout the paper. For a given vector or matrix X , XT

denotes its transpose and X� its conjugate transpose. Tr¹Xº denotes its trace when X is square and
jX j is the Euclidean norm of a vector X . lim supt!1 Y.t/ is the superior limit of Y.t/. �M is the
indicator function of M . R denotes the set of real numbers. 1n D .1; 1; : : : ; 1„ ƒ‚ …

n

/T . E represents the

mathematical expectation. Let G D .V; E ; A/ be a weighted digraph of order n with the set of nodes
V D ¹1; 2; : : : ; nº, set of arcs E � V � V , and a weighted adjacency matrix A D .aij /n�n with
non-negative elements. .j; i/ 2 E means that agent j can directly send information to agent i ; in
this case, j is called the parent of i , and i is called the child of j . The set of neighbors of vertex i is
denoted by Ni D ¹j 2 V W .j; i/ 2 E ; i ¤ j º. aij > 0 if node j is a neighbor of node i and aij D 0
otherwise. Node i is called an isolated node, if it has neither parent nor child. Node i is called a
source if it has no parents but children. Denote the sets of all sources and isolated nodes in V by
Vs D ¹j 2 VjNj D ;; ; is the empty set}. To avoid the trivial cases, V�Vs ¤ ; is always assumed
in this paper. A sequence .i1; i2/; .i2; i3/; : : : ; .ik�1; ik/ of edges is called a directed path from node
i1 to node ik . A directed tree is a digraph, where every node except the root has exactly one parent
and the root is the source. A spanning tree of G is a directed tree whose node set is V and whose
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edge set is a subset of E . A digraph G is strongly connected if there exists a path between any two
distinct nodes. A strong component of a digraph is an induced subgraph that is maximal and strongly
connected. The diagonal matrix D D diag.d1; d2; : : : ; dn/ is the degree matrix, whose diagonal
elements di D

P
j2Ni aij . The Laplacian of a weighted digraph G is defined as L D D � A.

We consider a system consisting of n agents and a leader (labeled by 0) that is depicted by a graph
NG D . NV; NE/, where NV D ¹0; 1; 2; : : : ; nº and NE � NV � NV is the set of arcs. If .0; i/ 2 NE , then 0 2 Ni .

A diagonal matrix B D diag.b1; b2; : : : ; bn/ is the leader adjacency matrix associated with NG ,
where bi > 0 if node 0 is a neighbor of node i , and bi D 0 otherwise.

The following lemmas will be used throughout the paper.

Lemma 1 ([6])
All the eigenvalues of the matrix H D LCB have positive real parts if and only if the leader is the
root of a spanning tree in NG.

Lemma 2 ([12])
The directed graph G is strongly connected if and only if its Laplacian is irreducible.

3. PROBLEM FORMULATION

Consider the following second-order multi-agent system:

Pxi D vi ; Pvi D ui ; i D 1; : : : ; n; (1)

where xi 2 R, vi 2 R, and ui 2 R are the position, velocity, and the control input of agent i ,
respectively.

The leader for (1) is described by

Px0 D v0; Pv0 D a0.t/; (2)

where x0 2 R, v0 2 R, and a0.t/ 2 R are the position, velocity, and acceleration of the leader,
respectively.

For the acceleration a0.t/ in (2), we make the following assumption that is reasonable.

Assumption 1
There exists an unknown constant Na0 6 0 such that

ja0.t/j 6 Na0: (3)

We also assume that the information received by the i th agent is corrupted by noises:

xij D

´
xj C �ij �ij ; j 2 Ni ;
0; j … Ni ;

xi0 D

´
x0 C �i0�i0; 0 2 Ni ;
0; 0 … Ni ;

vij D

´
vj C �ij �ij ; j 2 Ni ;
0; j … Ni ;

vi0 D

´
v0 C �i0�i0; 0 2 Ni ;
0; 0 … Ni ;

where ¹�ij ; i D 1; 2; : : : ; n; j D 0; 1; 2; : : : ; nº are mutually independent standard white noises,
and �ij 6 0; �ij 6 0 are noise intensities.

Let the distributed control law be given by

ui D �k1

nX
jD1

�
aij .xi � xij /C bi .xi � xi0/

�
� k2

nX
jD1

�
aij .vi � vij /C bi .vi � vi0/

�
; (4)

where k1 > 0 and k2 > 0 are design parameters. Substituting (4) into (1) yields that
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Pxi D vi ; Pvi D �k1

nX
jD1

.aij .xi � xij /C bi .xi � xi0//� k2

nX
jD1

.aij .vi � vij /C bi .vi � vi0//; (5)

where i D 1; : : : ; n:
By letting

Nx.t/ D .x1; : : : ; xn/
T � 1n ˝ x0;

Nv.t/ D .v1; : : : ; vn/
T � 1n ˝ v0;

(6)

one has that

PNx.t/ D Nv.t/; PNv.t/ D �k1.LC B/ Nx.t/ � k2.LC B/ Nv.t/ � 1n ˝ a0.t/C .k1� C k2�/ �; (7)

where � Ddiag
�P

11; : : : ;
P
1n

�
,
P
1i D .ai1�i1; : : : ; ain�in; bi�i0/, �D diag

�P
21; : : : ;

P
2n

�
,P

2iD.ai1�i1; : : : ; ain�in; bi�i0/, �D.�11; : : : ; �1n; �10; : : : ; �n1; : : : ; �nn; �n0/
T .

With �.t/ D . NxT .t/; NvT .t//T , we obtain that

d�.t/ D

2
4 0 In

�k1H �k2H

3
5 �.t/dt C

2
4 0

�1n ˝ a0.t/

3
5 dt C

2
4 0

k1� C k2�

3
5 d!

D F�.t/dt CD.t/dt CGd!;

(8)

where ! D .!11; : : : ; !1n; !10; : : : ; !n1; : : : ; !nn; !n0/
T is an n.n C 1/�dimensional standard

Brown motion, H D LC B .

Remark 1
For first-order agent systems like those studied in [3], because the position states converge invariably
to a unique limit, time-varying consensus gains satisfying persistence conditions can be introduced
in the consensus protocol to attenuate the noises. Unlike the first-order dynamics, as demonstrated
by [4], second-order multi-agent systems have more complex dynamic structures, which makes the
extension of consensus protocols from first-order to second-order challenging. For this reason, the
persistence consensus gains are hardly useful to deal with the noises in the second order case, which
can be evident later.

4. MEAN SQUARE BOUNDED TRACKING

Now, we give the definition of mean square bounded tracking.

Definition 1
The leader-following multi-agent system (1)–(2) with distributed control law (4) is said to achieve
mean square bounded tracking if for system (8), there exists a constant C > 0 independent of t
such that

lim sup
t!1

Ej�.t/j2 6 C < C1:

Before proceeding to investigate the main results for the mean square bounded tracking problem
under a fixed topology, we firstly establish the following lemmas that are essential to the derivation
of the main results of this paper.

Lemma 3
For the F defined in (8), we have that F is asymptotically stable if and only if the following
conditions hold:
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(a) The leader is the root of a spanning tree in NG;

(b)
k2
2

k1
> max
ˇ2�.H/

jIm.ˇ/j2

jˇ jRe.ˇ/
:

Proof
Firstly, we prove the necessity of (a). �

Let � and ˇ be, respectively, an eigenvalue of F and H ; from the definition of F , one has

j�I2n � F j D

ˇ̌̌
ˇ �In �In
k1H �In C k2H

ˇ̌̌
ˇ D j�2In C k2�H C k1H j D 0;

that yields

�2 C k2ˇ�C k1ˇ D 0: (9)

Let �1 and �2 be the roots of (9). Then, one has Re.�1/ < 0 and Re.�2/ < 0. By Vieta’s formulae,
it holds that

� .�1 C �2/ D k2ˇ: (10)

Noting that k2 > 0 and (10), one obtains Re.ˇ/ > 0. By Lemma 1, the leader is the root of a
spanning tree in NG.

Then, by Hurwitz stability criteria, Lemma 2 of [14] and (a), the necessary and sufficient condition
for Re.�/ < 0 is (b).

Remark 2
Condition (a) in Lemma 3 includes the following two aspects:

(i) There is a spanning tree in NG;
(ii) The spanning tree originates from the leader. Specifically, all the followers can obtain the

leader’s information by information exchange with their neighbors.

Lemma 4
If F is Hurwitz, the solution of system

dx.t/ D Fx.t/dt CGd!: (11)

satisfies

lim
t!1

Ejx.t/j2 D T r

²Z 1
0

eF �GGT eF
T �d�

³
: (12)

Proof
Let P.t/ D E.x.t/xT .t//. Then, by Theorem 3.2 in [15], one has

PP .t/ D FP.t/C P.t/F T CGGT ; (13)

from which and Corollary 1.1.6 in [16], noting that F is Hurwitz, one obtains

lim
t!1

P.t/ D

Z 1
0

eF �GGT eF
T �d�: (14)

By (14), it is easy to obtain (12). �
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Lemma 5
Let �i , i D 1; : : : ; s, be numbers with negative real parts, a0.t/ be the acceleration satisfying
Assumption 1, f .t; u/ D

Ps
iD1

Pni
kD0

dik
kŠ
e�i .t�u/.t � u/k , where dik is a constant, k and ni are

non-negative integers. Then one has

lim sup
t!1

ˇ̌̌
ˇ
Z t

t0

f .t; u/a0.u/du

ˇ̌̌
ˇ 6 sX

iD1

niX
kD0

jdikj Na0

.�Re.�i //kC1
:

Furthermore, if lim
t!1

a0.t/ D Oa, then one has

lim
t!1

ˇ̌̌
ˇ
Z t

t0

f .t; u/a0.u/du

ˇ̌̌
ˇ D jOaj

ˇ̌̌
ˇ̌ sX
iD1

niX
kD0

dik

.��i /kC1

ˇ̌̌
ˇ̌ : (15)

Proof
Let Ai D Re.�i /; Bi D Im.�i /, Ai < 0. By using the properties of Euler integral (	�function),
one obtains that

lim
t!1

Z t

t0

.t � u/k

kŠ
e�i .t�u/du D

1

.��i /kC1
: (16)

It follows from (16), the definition of f .t; u/ and Assumption 1 that

ˇ̌̌
ˇ
Z t

t0

f .t; u/a0.u/du

ˇ̌̌
ˇ D

ˇ̌̌
ˇ̌ sX
iD1

niX
kD0

Z t

t0

dik

kŠ
e�i .t�u/.t � u/ka0.u/du

ˇ̌̌
ˇ̌

6
sX
iD1

niX
kD0

Z t

t0

jdikj

kŠ
eAi .t�u/.t � u/kja0.u/jdu

6
sX
iD1

niX
kD0

Na0jdikj

Z t

t0

.t � u/k

kŠ
eAi .t�u/du;

(17)

which together with (16) leads to that

lim sup
t!1

ˇ̌̌
ˇ
Z t

t0

f .t; u/a0.u/du

ˇ̌̌
ˇ 6 sX

iD1

niX
kD0

jdikj Na0

.�Re.�i //kC1
: (18)

If lim
t!1

a0.t/ D Oa, by using (16) and L
0

Hospital rule

lim
t!1

Z t

t0

e�i .t�u/
.t � u/k

kŠ
a0.u/du D

Oa

.��i /kC1
: (19)

By (19) and the definition of f .t; u/, (15) follows.
Based on Lemma 5, one can obtain the following result. �

Lemma 6
If F is Hurwitz, then

lim sup
t!1

�Z t

t0

eF.t�u/D.u/du

�� �Z t

t0

eF.t�u/D.u/du

�
6

2nX
lD1

 
sX
iD1

niX
kD0

jdlikj Na0

.�Re.�i //kC1

!2
:

(20)
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In addition, if lim
t!1

a0.t/ D Oa, then one has

lim
t!1

�Z t

t0

eF.t�u/D.u/du

�� �Z t

t0

eF.t�u/D.u/du

�
D Oa2

2nX
lD1

ˇ̌̌
ˇ̌ sX
iD1

niX
kD0

dlik

.��i /kC1

ˇ̌̌
ˇ̌2 ; (21)

where �i is an eigenvalue of F , ni is the order of the Jordan block corresponding to �i , and dlik
(l D 1; : : : ; 2n, i D 1; : : : ; s, k D 0; : : : ; ni ) are constants determined by F .

Proof
For the matrix F , there exists an invertible matrix P such that

F D Pdiag.J1; : : : ; Js/P
�1; (22)

where

JiD

2
66664

�i 1 � � � 0

0
: : :

: : :
:::

:::
: : : �i 1

0 � � � 0 �i

3
77775
ni

:

Then one has

eJi .t�s/De�i .t�s/

2
66664

1 t � s � � � .t�s/ni�1

.ni�1/Š

0
: : :

: : :
:::

:::
: : : 1 t � s

0 � � � 0 1

3
77775
ni

;

that yieldsZ t

t0

eF.t�u/D.u/du D �

�Z t

t0

A1.t; u/a0.u/du; : : : ;

Z t

t0

A2n.t; u/a0.u/du

�T
; (23)

where Al.t; u/ D
Ps
iD1

Pni
kD0

dlik
kŠ
e�i .t�u/.t � u/k with dlik (l D 1; : : : ; 2n, i D 1; : : : ; s, k D

0; : : : ; ni ) being constants determined by F .
From (23), one has

lim sup
t!1

�Z t

t0

eF.t�u/D.u/du

�� �Z t

t0

eF.t�u/D.u/du

�
D lim sup

t!1

2nX
lD1

ˇ̌̌
ˇ
Z t

t0

Al.t; u/a0.u/du

ˇ̌̌
ˇ2 :
(24)

By (24) and Lemma 5, it is easy to obtain (20) and (21). �

Lemma 7
ForH D LCB , ifH has a zero eigenvalue, then one can choose its corresponding left eigenvector
.x1; : : : ; xn/

T satisfying xn > 0.

Proof
Because H has a zero eigenvalue, the leader is not the root of any spanning tree.

We prove this lemma from the following three cases:

1. If G has a spanning tree. Let S1; : : : ; Sp be the strong components of G.
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(a) If p D 1, G is strongly connected. Since the leader is not the root of any spanning tree, we
have B D 0. From Lemma 1 in [17] and Lemma 2, one can choose the left eigenvector
.x1; : : : ; xn/

T corresponding to the zero eigenvalue satisfying xi > 0, i D 1; : : : ; n.
Noting that H D LC B D L, the conclusion follows.

(b) If p > 1, by Theorem 5 in [18], there exists a strong component S2 with L22 2 Rr�r

(1 6 r < n) as its Laplacian, having no neighbors. By rearranging the indices of n agents,
one obtains

L D

�
L11 L12

0 L22

�
:

Since the leader is not the root of any spanning tree, B D diag.B11; B22/ with B22 D 0.
By Lemma 1 in [17] and Lemma 2, one can choose the left eigenvector corresponding to
the zero eigenvalue as .0; : : : ; 0; x1; : : : ; xr/T satisfying xi > 0, i D 1; : : : ; r . In view of
the fact that

LC B D

�
L11 C B11 L12

0 L22

�
;

the result follows.

2. If G has no spanning tree and is weakly connected, then there must be two strong components
without any links between them. By rearranging the indices of n agents properly, the Laplacian
L can be written as

L D

2
64L11 L12 L130 L22 0

0 0 L33

3
75 ;

where L22 and L33 are the Laplacian matrix of the two strong components, L12 ¤ 0 and
L13 ¤ 0. Let B D diag.B1; B2; B3/. Since the leader is not the root of any spanning tree,
we must have B2 D 0 or B3 D 0. Without loss of generality, we assume that B3 D 0. Then
similar to (b) of (1), we can conclude that the associated left eigenvector of the zero eigenvalue
of H has its xn > 0.

3. If G is not weakly connected, then by rearranging the indices of n agents properly, the Laplacian
L can be written as

L D

�
L11 0

0 L22

�
;

where L22 is the Laplacian matrix associated with a strong component. Denote B D
diag.B1; B2/. Since H has a zero eigenvalue, we must have that L11 C B1 or L22 C B2 has
a zero eigenvalue. If L22 C B2 has a zero eigenvalue, since L22 is the Laplacian matrix asso-
ciated with a strongly connected graph, then similar to (1), the result holds. If L11 C B1 has
a zero eigenvalue, then we may decompose L11 following the aforementioned procedure and
finally obtain the conclusion of the lemma.

Based on Lemmas 3–7, in the following, we give the main results of this paper. �

Theorem 1
For any given a0.t/ satisfying Assumption 1, the leader-following multi-agent systems (1)–(2), (4)
can achieve mean square bounded tracking for any .xi .0/; vi .0// if and only if

1. The leader is the root of a spanning tree in NG;

2.
k2
2

k1
> max
ˇ2�.H/

jIm.ˇ/j2

jˇ jRe.ˇ/
:
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Furthermore, the tracking error satisfies

lim sup
t!1

Ej�j2 6
2nX
lD1

 
sX
iD1

niX
kD0

jdlikj Na0

.�Re.�i //kC1

!2
C T r

²Z 1
0

eF �GGT eF
T �d�

³
: (25)

In addition, if lim
t!1

a0.t/ D Oa exists, then one has

lim
t!1

Ej�j2 D Oa2
2nX
lD1

ˇ̌̌
ˇ̌ sX
iD1

niX
kD0

dlik

.��i /kC1

ˇ̌̌
ˇ̌2 C T r ²Z 1

0

eF �GGT eF
T �d�

³
: (26)

Proof
The necessity is proved from Lemma 3; we only need to prove that multi-agent systems (1)–(2), (4)
can achieve mean square bounded tracking with (25) and (26) if and only if F is Hurwitz.

First, note that the solution of system (8) can be written as

� D eF.t�t0/�.t0/C

Z t

t0

eF.t�u/D.u/duC

Z t

t0

eF.t�u/Gd!:

Sufficiency: Let

� D �1 C �2;

�1 D e
F.t�t0/�.t0/C

Z t

t0

eF.t�u/Gd!;

�2 D

Z t

t0

eF.t�u/D.u/du:

(27)

Since F is Hurwitz,

lim
t!1

eF.t�t0/�.t0/ D 0: (28)

By the definition of F and G, one has E¹
R t
t0
eF.t�u/Gd!º D 0, which and (27)–(28) yields

lim sup
t!1

E
�
�T1 �2

�
D 0: (29)

By combining Lemmas 4 and 6 and (29), one can obtain (25) and (26).
Necessity: Let

� D �3 C �4 C �5;

�3 D e
F.t�t0/�.t0/;

�4 D

Z t

t0

eF.t�u/D.u/du;

�5 D

Z t

t0

eF.t�u/Gd!:

(30)

Noting that E�5 D 0, it is obvious that

E
�
�T �

�
6 �T3 �3 C 2�T3 �4: (31)
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Now, we prove whenRe.�/ 6 0, lim sup
t!1

�
�T3 �3 C 2�

T
3 �4

�
D C1. For simplicity, we only consider

the case of � D 0. For the case of Re.�/ > 0 and � D qi; q ¤ 0, it follows similarly.
From (9), if � D 0, one has ˇ D 0. By substituting ˇ D 0 into (9), F has at least two zero

eigenvalues. We assume that F has two zero eigenvalues and the rest eigenvalues have negative
real parts. With this assumption, from (9),H has only one zero eigenvalue. Therefore, the algebraic
multiplicity and the geometric multiplicity of �H D 0 are both 1. Let (
T1 ; 


T
2 /
T be a left eigenvector

corresponding to the zero eigenvalue for F , then one can obtain

�

T1 ; 


T
2

� " 0 In

�k1H �k2H

#
D
�
0T ; 0T

�T
; (32)

which gives that 
1 D 0; 
T2 H D 0.
From (32) and the aforementioned discussions, it is easy to know that the algebraic multiplicity

of �F D 0 is 2 and the geometric multiplicity of �F D 0 is 1. Therefore, the Jordan block for
�F D 0 is

eJs.t�t0/ D

2
4 1 t � t0

0 1

3
5 : (33)

Let �.t0/ D .0; : : : ; 0; ˛/ with ˛ ¤ 0 a constant to be chosen. Let pij be the .i; j /�th element of
P�1. By using (32), Lemma 7, and noting that P�1 is formed by the left eigenvectors and expanded
left eigenvectors of F , one can obtain p2n;2n > 0.

Thus,

�T3 �3D�
T .t0/e

F T .t�t0/eF.t�t0/�.t0/

D�T.t0/.P
�1/Tdiag

�
eJ

T
1
.t�u/; : : : ; eJ

T
s .t�t0/

	
P TPdiag

�
eJ1.t�t0/; : : : ; eJs.t�t0/

	
P�1�.t0/

>�min.P TP /�T .t0/.P�1/T diag
�
eJ

T
1
.t�t0/eJ1.t�t0/; : : : ; eJ

T
s .t�t0/eJs.t�t0/

	
P�1�.t0/;

(34)

which yields

lim
t!1

�T3 �3 > �min.P TP /˛2
�
p22n;2n.t � t0/

2 C p22n�1;2n C 2p2n;2np2n�1;2n.t � t0/C p
2
2n;2n

�
D C1: (35)

Denote ˇ.t/ D .0; : : : ; 0; 1/T eF
T .t�t0/

R t
t0
eF.t�s/D.s/ds and choose ˛ as follows:

(i) If lim sup
t!1

ˇ.t/ D C1, choosing ˛ as any positive constant;

(ii) If lim sup
t!1

ˇ.t/ D �1, choosing ˛ as any negative constant;

(iii) If lim sup
t!1

ˇ.t/ is finite, choosing ˛ as any non-zero constant.

Noting that

�T3 �4 D ˛ˇ.t/; (36)

with the definition of ˛ and (9), we have

lim sup
t!1

�
�T3 �3 C 2�

T
3 �4

�
D lim
t!1

�T3 �3 C 2 lim sup
t!1

�T3 �4

> lim
t!1

�T3 �3

D C1:

(37)
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It then follows from (31) and (37) that

lim sup
t!1

E
�
�T �

�
D C1: (38)

The necessity is proved. �

Remark 3
From (25), we can find that

P2n
lD1

�Ps
iD1

Pni
kD0

jdlik j Na0
.�Re.�i //

kC1

	2
is produced by the acceleration of

the leader and T r
°R1
0
eF �GGT eF

T �d�
±

is produced by the noise intensity, which shows that the

bound of the tracking error heavily relies on the acceleration of the leader and noise intensity.

Remark 4
When G D 0, the problem under investigation reduces to the case in [13]. However, in [13], only
sufficient conditions are derived for bounded tracking. In Theorem 1, we present necessary and
sufficient conditions for mean square bounded tracking.

It should be noted that in Theorem 1, we do not impose any extra assumption on the noise
intensities �ij > 0; �ij > 0. In particular, all the noise intensities can be zero simultane-
ously. In the following, we are interested in the case where some noise intensities are known to
be non-zero.

We make the following assumption.

Assumption 2
In the union graph NG, there exists at least an edge .j; i/ 2 E such that �ij > 0; or �ij > 0,
j D 0; 1; 2; : : : ; n.

Under Assumption 2, we can obtain the following result.

Theorem 2
For any given a0.t/ satisfying Assumption 1, and any given initial condition .xi .0/; vi .0//

and .x0.0/; v0.0//, under Assumption 2, the leader-following multi-agent system (1)–(2), (4)
can achieve mean square bounded tracking with the tracking error (25) and (26) if and
only if

1. The leader is the root of a spanning tree in NG;

2.
k2
2

k1
> max
ˇ2�.H/

jIm.ˇ/j2

jˇ jRe.ˇ/
:

Proof
The sufficiency is the same as that in the proof of Theorem 1. Now, we prove the necessity.

Let

� D �6 C �7;

�6 D e
F.t�t0/�.t0/C

Z t

t0

eF.t�u/D.u/du;

�7 D

Z t

t0

eF.t�u/Gd!:

(39)

Then, we have

E
�
�T �

�
D E

�
�T6 �6

�
CE

�
�T7 �7

�
> E

�
�T7 �7

�
: (40)

In the following, we aim to prove that when Re.�/ > 0, lim
t!1

E
�
�T7 �7

�
D C1.
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For � and F , we make the same assumptions as that in the proof of the necessity of Theorem 1.
By It Oo isometry property of stochastic integral, noting that P TP is positive definite and T r¹ABº D
T r¹BAº, we have

E.�T7 �7/D

Z t

t0

T r
°
eF.t�u/GGT eF

T .t�u/
±
du

> �min.P
TP /

Z t

t0

T r
°
diag

�
eJ
T
1
.t�u/eJ1.t�u/; : : : ; eJ

T
s .t�u/eJs.t�u/

	
P�1GGT .P�1/T

±
du;

(41)

where eJs.t�u/ has the same structure with eJs.t�t0/ in (33).
Let

P�1 D

2
4P11 P12
P21 P22

3
5 ; (42)

where the dimensions of P11, P12, P21 and P22 are .2n� 1/� .2n� 1/, .2n� 1/� 1, 1� .2n� 1/,
1� 1, respectively. Let G1 be the .2n� 1/� .2n� 1/’s order principal minor determinant of GGT ,
and g2 be the .2n; 2n/th element of GGT . Under Assumption 2, we know that g2 > 0.

By the definition of G and (42), one has

P�1GGT .P�1/T D

"
P11 P12

P21 P22

#"
G1 0

0 g2

#"
P T11 P

T
21

P T12 P22

#

D

"
P11G1P

T
11 C g2P12P

T
12 P11G1P

T
21 C g2P12P22

P21G1P
T
11 C g2P22P

T
12 P21G1P

T
21 C g2P

2
22

#
:

(43)

From (32), with Lemma 7, one can obtain that P22 > 0. Therefore,

P21G1P
T
21 C g2P

2
22 > �min.G1/P21P T21 C g2P 222 > 0: (44)

From (41), (43) and (44), it follows that

lim
t!1

E.�T7 �7/ > lim
t!1

�min.P
TP /g2P

2
22

Z t

t0

�
.t � u/2 C ˛1uC ˛2

�
du

D C1;

(45)

where ˛1 and ˛2 are constants.
By (40) and (45), the necessity is proved. �

Remark 5
It should be emphasized that Theorem 2 is not a special case of Theorem 1. Undoubtedly, under
Assumption 2, Theorem 1 also holds. However, the result in Theorem 2 is more general than that
in Theorem 1. Specifically, Theorem 2 holds for more general initial condition .xi .0/; vi .0// and
.x0.0/; v0.0//.

From Theorems 1 and 2, one immediately obtains the following result:

Corollary 1
If the acceleration a0.t/ satisfying lim

t!1
a0.t/D0, with the noisy intensityGD0, lim

t!1
Ej�.t/j2D 0.
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5. NUMERICAL SIMULATION EXAMPLES

Example 1
We consider a system consisting of one leader and three followers. The communication topology
of three followers is described by the digraph G D .V; E ; A/, where V D ¹1; 2; 3º, E D ¹.1; 2/º,
and A D .aij /3�3 with a21 D 1, a11 D a12 D a13 D a22 D a23 D a31 D a32 D a33 D 0.
The communications between the leader and the three followers can be described by b1 D b3 D 1,
b2 D 0. Obviously, the leader is globally reachable by the three followers. The noise intensity is
chosen as �21 D �21 D �10 D �10 D �30 D �30 D 1 and the acceleration a.t/ D sin t , by
choosing k1 D k2 D 1, the conditions of Theorem 1 are satisfied. By choosing x0.0/ D �1,
v0.0/ D �1, x1.0/ D 1, v1.0/ D �0:5, x2.0/ D �3, v2.0/ D �0:5, x3.0/ D 5, v3.0/ D �0:5,
the trajectories of the position and velocity of the system are given in Figures 1 and 2, respec-
tively, from which one can find that the leader-following multi-agent system achieved mean square
bounded tracking.
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Figure 1. The trajectories of the positions with noise and acceleration.
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Figure 2. The trajectories of the velocities with noise and acceleration.
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Figure 3. The trajectories of the positions without noise and acceleration.
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Figure 4. The trajectories of the velocities without noise and acceleration.

Example 2
Consider the same system as in Example 1. Suppose that all the noise intensities are zero and the
acceleration of the leader is zero. By choosing k1 D k2 D 1, x0.0/ D �1, v0.0/ D 2, x1.0/ D �3,
v1.0/ D �0:5, x2.0/ D 3, v2.0/ D 2, x3.0/ D 0:5, v3.0/ D �0:5, the trajectories of the position
and velocity of the system are given in Figures 3 and 4, respectively, from which one can find that
the leader-following multi-agent system achieved asymptotic tracking.

6. CONCLUSIONS

In this paper, we have investigated the distributed tracking problem of leader-follower multi-agent
systems with measurement noises under directed topology. By using stochastic analysis tools, some
necessary and sufficient conditions have been obtained for mean square bounded tracking.

There are many related problems to be investigated. For example, when there are delays in
the communication channels, how to design a controller for tracking, and how to generalize
the results of this paper to the cases of multi-agent systems with measurement noises based on
sampled-data control.
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